

FLUG Wireless Mesh Network Talk

By Jeff Liebermann jeffl@cruzio.com 2015-02-28

This document located at:

http://802.11junk.com/jeff1/FLUG-talk-2015-02-28/

- How Wi-Fi works
 - o One transmitter on the air at a time.
 - o CSMA/CA. Half Duplex. Store and forward repeaters.
 - o Half or full duplex backhaul.
 - o Indoor and outdoor are very different.
- Buzzwords etc.
 - o Mesh is ad-hoc networking. All wi-fi is on MAC layer 2.
 - o Repeaters and WDS. Partial mesh, no routing. Acts as both access point and store and forward repeater at same time.
 - o Metricom. Partial mesh with geographic routing.
 - o WDS, NPG, OLSR, etc
- Routing
 - o Each hop reduces max speed by using air time to send extra packets.
 - o Table OLSR Optimized link state routing.
 - o Dynamic OLSR self organizing.
 - o Hierarchical CBRP (Cluster based routing protocol)
 - o AODV On Demand Distance Vector.
 - o CBRD Cluster Based Routing Protocol.
- Types of mesh networks.
 - o Ad-hoc pretzel. No controller as in infrastructure.
 - o Single band store and forward. Most common.
 - o Dual band. One for users, one for backhaul.
- Advantages of Wireless Mesh Networks.
 - o Saves on cost of wired backhaul.
 - Self configuring, self provisioning, self organizing, self healing, self-monitoring.
 - o Grow or move as needed.
 - o Standardized as 802.11s with HWMP routing. Used by OLPC for small mesh networks. http://en.wikipedia.org/wiki/IEEE_802.11s
- Disadvantages or why mesh sucks.
 - o Doesn't scale.
 - o Maximum speed limited my number of hops.
 - o Congestion near wired access points.
 - o High collision rate due to hidden nodes.

- o Usually requires omnidirectional antennas, which are not optimum pattern for rooftops. Directional antennas create hidden nodes.
- o What's wrong with this picture?
 http://wndw.net/pdf/wndw3-en/ch08-mesh networking.pdf
- o 802.11 not designed for large networks. Polling is more efficient for WISP.
 - http://www.solectek.com/files/pdf/techtalk/White_Pap
 er-polling_MAC_advantage_v1.2.pdf
- o Indoor vs Outloor. Few AP's versus thousands.
- o Low percentage of packet delivery due to interference, hidden nodes, and retransmissions. MIT Rooftop Networks.
- o http://802.11junk.com/jeff1/FLUG-talk-2015-0228/MIT-roofnet-b.pdf
- o http://pdos.csail.mit.edu/grid/pubs.html
- o http://pdos.csail.mit.edu/grid/
- o Speed drops to the slowest speed (802.11b=1Mbit/sec, 802.11a/q=6Mbits/sec)
- o Limited encryption. Must use RADIUS server. Cannot encrypt IP header.
- o http://telehash.org
- o Too many wireless mesh routing protocols (70) http://en.wikipedia.org/wiki/Wireless_mesh_network#R outing_protocols
- o Google does not support Ad-Hoc networking in Android.

0

- Examples
 - o San Francisco (6 -> 22 nodes per square mile)
 - o Philadelphia (Cost over-runs)
 - o Meraki. Bought by Cisco for \$1.6 billion in 2012 mostly for cloud management technology.
 - o Tropos

0

- o Metricom
- Links and reading
 - o Wireless Networking in the Developing World http://wndw.net
 - o http://www.muniwireless.com
 - o https://www.eero.com
- Speed slowdown with repeater demo
 - o http://www.techrepublic.com/blog/linux-and-opensource/using-jperf-to-check-network-performance/
 - o Iperf https://iperf.fr/
 - o Jperf http://sourceforge.net/projects/iperf/files/

o Jperf
 https://code.google.com/p/xjperf/downloads/detail?na
 me=jperf-2.0.2.zip

0